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Relations entre diverses périodes en astronomie. 
 

 

Introduction. 

Nous allons établir dans ce document les relations entre diverses périodes en astronomie en nous 
appuyant sur les propriétés du solide indéformable. Nous établirons la formule générale de la vitesse 
de tout point du solide. 
Cette formule nous permettra ensuite d’établir les relations précitées. 
 

1 Cinématique du solide indéformable. 

Nous représentons un référentiel ‘’absolu’’ avec un système d’axes ( O, 𝑥1, 𝑥2, 𝑥3). 
Nous avons un solide de centre de masse A et nous avons dessiné un système d’axes ( A, 𝑦1, 𝑦2, 
𝑦3).solidaire du solide (fig1). Nous avons symbolisé en quelque sorte le solide par le système d’axes  
( A, 𝑦1, 𝑦2, 𝑦3). 
 
 
 
 

 

 

 

 

 

 

 
  

            Fig.1 Les référentiels absolu ℛ et relatif ℛ’ 
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1.1Composition des vitesses. 
Considérons la figure 2. 

𝛺⃗  nous dit comment le repère relatif ℛ’ se réoriente par rapport au référentiel ℛ. 𝜔⃗⃗  nous informe sur 
le mouvement du solide vu depuis le référentiel ℛ’. Maintenant, nous cherchons à déterminer la 
vitesse du point P dans le référentiel ℛ, autrement dit, sa vitesse absolue 𝑣𝑎(𝑝) 
 
 

 

 

 

 

 

 

 

 

 

               Fig.2 Composition de rotations des référentiels absolu ℛ et relatif ℛ’ 

 
Nous pouvons écrire la formule générale suivante : 
 

 
𝑣𝑎(𝑃) =   𝑣𝑎(𝐴) + Ω⃗⃗  𝛬 𝐴𝑃⃗⃗⃗⃗  ⃗ +  𝑣𝐴(𝑃)   

 
où : 
 𝑣𝑎(𝐴) est la vitesse absolue du point A, c’est-à-dire sa vitesse dans le référentiel ℛ. 
 
 𝑣𝐴(𝑃)  est la vitesse relative du point P dans le référentiel ℛ’. 
 

or 𝑣𝐴(𝑃) =  𝜔⃗⃗  𝛬 𝐴𝑃⃗⃗⃗⃗  ⃗ , d’où : 
 

𝑣𝑎(𝑃) =   𝑣𝑎(𝐴) + Ω⃗⃗  𝛬 𝐴𝑃⃗⃗⃗⃗  ⃗ +  𝜔⃗⃗  𝛬 𝐴𝑃⃗⃗⃗⃗  ⃗  
 

𝑣𝑎(𝑃) =   𝑣𝑎(𝐴) + 𝐴𝑃⃗⃗⃗⃗  ⃗ (𝜔⃗⃗ + Ω⃗⃗ ) 

 
Nous voyons que la vitesse absolue du point P est composée de la vitesse absolue de point A ( centre 
de masse du solide) et de la composition des vitesse angulaire et c’est bien ce que nous cherchions à 
faire apparaître.  
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2.1 Relations entre les périodes sidérale et synodique de la Lune.  

Nous avons les données suivantes : 
T* = 365,256363j : période sidérale de la Terre dans le référentiel galiléen de Copernic ℛ dont le 
Soleil est le centre. 
 𝑳𝒔  = 29,530589j : période synodique de la Lune dans le référentiel géocentrique ℛ’ 
 
Nous recherchons la période sidérale de la Lune. Cette période sidérale n’est pas accessible à la 
mesure car la Terre se déplace par rapport au fond d’étoiles, elle peut néanmoins se déterminer par 
le calcul. Considérons le schéma de la figure 3 . 
Le repère (S, 𝑥1, 𝑥2, 𝑥3).est attaché au référentiel de Copernic ℛ d’origine S. 
 
Le repère (T, 𝑦̂1, 𝑦̂2, 𝑦̂3).est attaché au système Terre-Lune de centre de masse T qui constitue 
l’origine de repère géocentrique ℛ’. Celui-ci est animé d’un mouvement translation circulaire dans ℛ 
de période 𝑇∗. 

 

Fig.3 Composition des rotations de la Terre et de la Lune. 

 

 

 

La Lune est animée d’un mouvement de rotation dans ℛ’ de période.𝐿𝑠 autour de 𝑦̂3. 
Le vecteur 𝑢̂ est le vecteur unitaire allant de de S vers L 

A l’instant initial 𝑡0, 𝑆𝑇⃗⃗ ⃗⃗ .et 𝑆𝐿⃗⃗⃗⃗  sont colinéaires, ce que nous pouvons exprimer sous la forme : 
 

𝑆𝑇⃗⃗ ⃗⃗ = 𝑆𝑇 𝑢̂ 

𝑆𝐿⃗⃗⃗⃗ = 𝑆𝐿 𝑢̂ 
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Après un jour sidéral, la Lune devrait se retrouver en L’ ( position II) si le système indéformable Terre-
Lune n’était affecté que du seul mouvement de translation autour de ℛ. Dans ce cas : 
 

𝑆𝐿′⃗⃗ ⃗⃗  ⃗ = 𝑆𝐿′𝑢̂ 𝑚𝑎𝑖𝑠 𝑆𝑇⃗⃗ ⃗⃗ ≠ 𝑆𝑇 𝑢 ̂ 𝑝𝑢𝑖𝑠𝑞𝑢𝑒 𝑆𝑇⃗⃗ ⃗⃗  𝑒𝑡 𝑢 ̂ 𝑛′𝑜𝑛𝑡𝑝𝑎𝑠 𝑙𝑎 𝑚ê𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  
 

Les vecteurs 𝑆𝐿⃗⃗⃗⃗  𝑒𝑡 𝑆𝑇⃗⃗ ⃗⃗  ne sont donc plus colinéaires.  Cependant le mouvement de rotation de la Lune 

autour de 𝑦̂3 fait qu’après un jour sidéral 𝑆𝐿⃗⃗⃗⃗  𝑒𝑡 𝑆𝑇⃗⃗ ⃗⃗  le sont de nouveau. La Lune a alors balayé un 
angle de 𝜃 . 
 
Conformément à ce que nous avons vu précédemment, la composition des vitesses angulaires est : 
 

𝜔⃗⃗ 0 = 𝜔⃗⃗ 𝐿𝑠 + 𝜔⃗⃗ 𝑇∗  

où 𝜔⃗⃗ 𝐿𝑠est la vitesse angulaire de la période synodique de la Lune dans ℛ’ et 𝜔⃗⃗ 𝑇∗la vitesse angulaire 
sidérale de la Terre dans le référentiel de Copernic ℛ. Les vecteurs étant colinéaires, nous pouvons 
écrire : 

𝜔0 = 𝜔𝐿𝑠 + 𝜔𝑇∗  

Faisons apparaître les différentes périodes dans l’expression ci-dessus : 
 

2𝜋

𝑇0
= 

2𝜋

𝐿𝑠
+ 

2𝜋

𝑇∗
 < = >  

1

𝑇0
= 

1

𝐿𝑠
+ 

1

𝑇∗
    

 
Le calcul numérique nous donne : 
 
𝑇0 = 𝐿∗ = 27,3216 𝑗∗   𝑞𝑢𝑖 𝑒𝑠𝑡 𝑙𝑎 𝑝é𝑟𝑖𝑜𝑑𝑒 𝑠𝑖𝑑é𝑟𝑎𝑙𝑒 𝑑𝑒 𝑙𝑎 𝐿𝑢𝑛𝑒 𝑒𝑛 𝑗𝑜𝑢𝑟 𝑠𝑖𝑑é𝑟𝑎𝑢𝑥 𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑒𝑠. 
 
 
 
 

2.2 Relations entre les périodes terrestres : jour sidéral, jour solaire 

moyen.  

Nous noterons 𝐽𝑚 la période du jour solaire moyen.  
Considérons la figure 4. Le repère (S, 𝑥1, 𝑥2, 𝑥3).est attaché au référentiel de Copernic ℛ d’origine S. 
Le repère (T, 𝑦̂1, 𝑦̂2, 𝑦̂3).est attaché au système Terre. Le centre de celle-ci constitue l’origine du 
référentiel géocentrique ℛ’. Ce référentiel est animé d’un mouvement de translation circulaire dans ℛ 
de période 𝑇∗ 



5 
 

 
     Fig.4 Composition des rotations relatives à l’année sidérale et au jour solaire moyen terrestre. 

 

Le point M est un point quelconque à la surface de la Terre animé d’un mouvement de rotation de 
période 𝐽𝑚 autour de 𝑦̂3 qui est confondu avec l’axe des pôles. Le vecteur 𝑢̂ est le vecteur unitaire 
allant de S vers M. 

A l’instant initial 𝑡0 𝑆𝑇⃗⃗ ⃗⃗  et 𝑆𝑀⃗⃗⃗⃗⃗⃗  sont colinéaires, ce que nous pouvons écrire de la façon suivante : 
 

𝑆𝑇⃗⃗ ⃗⃗ = 𝑆𝑇 𝑢̂ 

𝑆𝑀⃗⃗⃗⃗⃗⃗ = 𝑆𝑀 𝑢̂ 
 
Après un jour sidéral, le point devrait se trouver en M’ si ce point n’était affecté que du seul 
mouvement de translation autour de ℛ ( position II), dans ce cas : 
 

𝑆𝑀′⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑆𝑀′ 𝑢̂ 𝑚𝑎𝑖𝑠 𝑆𝑇⃗⃗ ⃗⃗ ≠ 𝑆𝑇 𝑢̂ 
 

Les vecteurs 𝑆𝑇⃗⃗ ⃗⃗  et 𝑆𝑀⃗⃗⃗⃗⃗⃗  ne sont plus colinéaires. Cependant la rotation de la Terre autour de 𝑦̂3 

(autour de l’axe des pôles ) fait qu’après un jour sidéral 𝑆𝑇⃗⃗ ⃗⃗  et 𝑆𝑀⃗⃗⃗⃗⃗⃗  le sont de nouveau  
( à l’instant 𝑡0 + 𝐽𝑚 ). 
 
La composition des vitesses angulaires nous donne : 
 

𝜔⃗⃗ 0 = 𝜔⃗⃗ 𝑗𝑚 + 𝜔⃗⃗ 𝑇∗ 

soit, 
 

1

𝑇0
= 

1

𝑗𝑚
+ 

1

𝑇∗
    

Le calcul numérique nous donne : 
𝑇0 = 𝑗∗ =  0,9972 𝑗𝑚 = 86164 𝑠 𝑞𝑢𝑖 𝑒𝑠𝑡 𝑙𝑎 𝑝é𝑟𝑖𝑜𝑑𝑒 𝑑𝑢 𝑗𝑜𝑢𝑟 𝑠𝑖𝑑é𝑟𝑎𝑙 𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑒. 
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2.3 Relations entre les périodes sidérale et synodique des planètes.  

Deux cas sont à envisager ici : le cas où la planète dont on cherche la période sidérale est inférieure 
par rapport à la planète de référence et le cas où la planète dont on cherche la période sidérale est 
supérieure à la planète de référence. Nous commencerons par ce second cas. 
 

2.3.1 Cas où la planète de référence est supérieure à la planète considérée.  

Nous nommons 𝑃𝑟𝑒𝑓 la planète de référence, ici la plus proche du Soleil, 𝑃𝑠𝑢𝑝 la planète supérieure 

par rapport à la planète de référence, 𝑇𝑠𝑢𝑝
∗  la période sidérale de la planète supérieure, 𝑇𝑠𝑢𝑝

𝑠  sa 

période synodique, grandeur accessible par la mesure depuis 𝑃𝑟𝑒𝑓.  

Considérons la figure 5, le repère (𝑃𝑟𝑒𝑓, 𝑥1, 𝑥2, 𝑥3), symbolise le référentiel de Copernic ℛ, d’origine 

𝑃𝑟𝑒𝑓 . 

ℛ’ a pour origine le centre de 𝑃𝑠𝑢𝑝 , il est symbolisé par le repère (𝑃𝑠𝑢𝑝, 𝑦̂1, 𝑦̂2, 𝑦̂3). 

 
   Fig.5 Composition des rotations relatives aux périodes sidérale et synodique d’une planète supérieure. 

 
ℛ’ est animé d’un mouvement de translation dans ℛ de période 𝑇𝑠𝑢𝑝

∗ . Le point M est animé d’un 

mouvement de rotation dans ℛ’ autour de l’axe 𝑦̂3 de période 𝑇𝑠𝑢𝑝
𝑠 . Le vecteur 𝑢̂ est le vecteur 

unitaire allant de 𝑃𝑟𝑒𝑓 vers M. 

A l’instant initial 𝑡0 𝑃𝑟𝑒𝑓 𝑃𝑠𝑢𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et 𝑃𝑟𝑒𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ sont colinéaires, ce que nous pouvons exprimer de la façon 

suivante :  

 
𝑃𝑟𝑒𝑓 𝑃𝑠𝑢𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑃𝑟𝑒𝑓 𝑃𝑠𝑢𝑝 𝑢̂ 

 
𝑃𝑟𝑒𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑃𝑟𝑒𝑓𝑀 𝑢̂ 
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Après un intervalle de temps correspondant à la période  𝑇𝑟𝑒𝑓
∗ , 𝑃𝑠𝑢𝑝 a tourné d’un angle θ et se situe 

en position II avec le point M en M’ si celui-ci était affecté du seul mouvement de translation dans ℛ. 

Dans ce cas, le vecteur unitaire 𝑢̂ ne serait plus colinéaire avec le vecteur 𝑃𝑟𝑒𝑓  𝑃𝑠𝑢𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   . Cependant la 

rotation de M dans ℛ’ fait qu’après un intervalle de temps correspondant à 𝑇𝑟𝑒𝑓
∗  , 𝑃𝑟𝑒𝑓  𝑃𝑠𝑢𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et 𝑃𝑟𝑒𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

sont de nouveau alignés. Le point M a alors effectué une rotation de 𝜃 dans ℛ’ 

 
La composition des vitesses angulaires est la suivante : 
 

𝜔⃗⃗ 𝑇𝑟𝑒𝑓
∗ = 𝜔⃗⃗ 𝑠𝑢𝑝

∗ + 𝜔⃗⃗ 𝑠𝑢𝑝
𝑠  

soit : 
 

1

𝑇𝑟𝑒𝑓
∗ = 

1

𝑇𝑠𝑢𝑝
∗ + 

1

𝑇𝑠𝑢𝑝
𝑠  

Exemple : cas Terre-Jupiter 

Dans cet exemple, la Terre est la planète de référence tandis que Jupiter est la planète supérieure. 
Nous savons que la mesure de la période synodique de Jupiter est mesurable depuis la Terre, nous 
cherchons la période sidérale de la planète géante. Nous modifions l’expression ci-dessus de la façon 
suivante : 
 

1

𝑇∗
− 

1

𝑇𝑗
𝑠 = 

1

𝑇𝑗
∗ 

 
Les éphémérides nous donnent la valeur de la période synodique de Jupiter, soit 𝑇𝑗

𝑠 = 398,9 𝑗∗ 

Le calcul nous donne : 
 

𝑇𝑗
∗ ≈ 4330,9 𝑗∗  ≈ 11,85 𝑇∗ 𝑞𝑢𝑖 𝑒𝑠𝑡 𝑙𝑎 𝑝é𝑟𝑖𝑜𝑑𝑒 𝑑𝑒 𝑙′𝑎𝑛𝑛é𝑒 𝑠𝑖𝑑é𝑟𝑎𝑙𝑒 𝑑𝑒 𝐽𝑢𝑝𝑖𝑡𝑒𝑟 
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2.3.2 Cas où la planète de référence est inférieure à la planète considérée. 

Le dessin de la figure évolue de la façon suivante :  
 

 
      Fig.6 Composition des rotations relatives aux périodes sidérale et synodique d’une planète inférieure. 
 
Dans ce cas précis, 𝑃𝑖𝑛𝑓 est la plus planète la plus proche du Soleil et celle dont on cherche la période 

sidérale. 𝑃𝑟𝑒𝑓 est la planète supérieure à 𝑃𝑖𝑛𝑓. Notons 𝑇𝑖𝑛𝑓
∗  la période sidérale de la planète inférieure 

et 𝑇𝑖𝑛𝑓
𝑠  sa période synodique directement accessible à la mesure depuis la planète de référence dont 

nous notons la période sidérale 𝑇𝑟𝑒𝑓
∗ . 

Le repère (𝑃𝑖𝑛𝑓 𝑥1, 𝑥2, 𝑥3), symbolise le référentiel de Copernic ℛ, d’origine 𝑃𝑖𝑛𝑓. Le référentiel ℛ’ a 

pour origine le centre 𝑃𝑟𝑒𝑓, il est symbolisé par le repère (𝑃𝑟𝑒𝑓 𝑦̂1, 𝑦̂2, 𝑦̂3). ℛ’ est animé d’un 

mouvement de translation circulaire uniforme dans ℛ de période 𝑇𝑟𝑒𝑓
∗ . 

Le point M est animé d’un mouvement de rotation dans ℛ’ autour de l’axe 𝑦̂3 de période 𝑇𝑖𝑛𝑓
𝑠 . Le 

vecteur 𝑢̂ est le vecteur unitaire allant de 𝑃𝑖𝑛𝑓 vers M. 

A l’instant initial 𝑡0 𝑃𝑖𝑛𝑓 𝑃𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et 𝑃𝑖𝑛𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ sont colinéaires, ce que nous pouvons exprimer de la façon 

suivante :  

 
𝑃𝑖𝑛𝑓 𝑃𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑃𝑖𝑛𝑓 𝑃𝑟𝑒𝑓 𝑢̂ 

 
𝑃𝑟𝑒𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑃𝑖𝑛𝑓𝑀 𝑢̂ 

 
Après un intervalle de temps correspondant à la période 𝑇𝑟𝑒𝑓

∗ , 𝑃𝑟𝑒𝑓 se situe en position II. Si le point 

M était affecté du seul mouvement de translation dans ℛ, le vecteur unitaire 𝑢̂ ne serait plus 

colinéaire avec le vecteur 𝑃𝑖𝑛𝑓 𝑃𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Cependant, la rotation de M dans ℛ’ fait qu’après un intervalle  
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De temps correspondant à 𝑇𝑟𝑒𝑓
∗ , les vecteurs 𝑃𝑖𝑛𝑓 𝑃𝑟𝑒𝑓

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et 𝑃𝑟𝑒𝑓 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ sont de nouveau alignés. 

Le point M a alors effectué une rotation de 𝜃. 
  
La composition des vitesses angulaires donne : 
 
 

 𝜔⃗⃗ 𝑖𝑛𝑓
∗ = 𝜔⃗⃗ 𝑟𝑒𝑓

∗ + 𝜔⃗⃗ 𝑖𝑛𝑓
𝑠  

1

𝑇𝑖𝑛𝑓
∗ = 

1

𝑇𝑟𝑒𝑓
∗ + 

1

𝑇𝑖𝑛𝑓
𝑠  

Exemple : cas Terre-Vénus 

Dans cet exemple, la Terre est la planète de référence, tandis que Vénus, plus proche du Soleil, est la 
planète inférieure. 
En appliquant la formule ci-dessus, nous avons ;  
 

1

𝑇𝑉
∗ = 

1

𝑇∗
+ 

1

𝑇𝑉
𝑠 

 
Nous connaissons 𝑇∗ = 365,256363 𝒋∗, les éphémérides nous donnent la période synodique de 
Vénus : 𝑇𝑉

𝑠 = 583,9 𝑗∗ 
Le calcul nous donne ; 
 

𝑇𝑉
∗  ≈ 224,72 𝑗∗  𝑞𝑢𝑖 𝑒𝑠𝑡 𝑙𝑎 𝑝é𝑟𝑖𝑜𝑑𝑒 𝑠𝑖𝑑é𝑟𝑎𝑙𝑒 𝑑𝑒 𝑉é𝑛𝑢𝑠. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 
 

2.4 Périodes moyennes de successions des éclipses. 
 
Deux conditions doivent être remplies pour qu’il y ait éclipses : 

• La syzygie doit être vérifiée. 

• La Lune et la Soleil doivent être sur la ligne des nœuds. 
 

2.4.2 Année draconitique ou années des éclipses.  

Considérons le figure 7 : 

 
Fig.7 Composition des rotations relatives aux périodes de la ligne des nœuds lunaires et à la période sidérale 
           terrestre. 
 
Nous considérons le référentiel de Copernic ℛ centré sur le Soleil et doté du repère (𝑆 𝑥1, 𝑥2, 𝑥3). 
Le référentiel ℛ’ centré sur le nœud lunaire ascendant 𝑛𝑎 est symbolisé par le référentiel  
(𝑛𝑎 𝑦̂1, 𝑦̂2, 𝑦̂3).Il est animé d’un mouvement de translation circulaire uniforme dans le référentiel ℛ 
de période 𝑇𝑛𝑎

= 18,6 𝑇∗, nous savons en effet que la période de précession de la ligne des nœuds 

est de 18,6 années sidérales terrestres. Par ailleurs, la Terre est animée d’un mouvement de rotation 
dans ℛ’ de période 𝑇∗. Le raisonnement est alors tout à fait similaire aux précédents. 
La composition des vitesses angulaires est la suivante :  
 

𝜔⃗⃗ 𝐸 = 𝜔⃗⃗ 𝑛𝑎
+ 𝜔⃗⃗ 𝑇

∗  

1

𝑇𝐸
= 

1

𝑇𝑛𝑎

+ 
1

𝑇∗
 

Avec 𝑇𝑛𝑎
= 18,6 𝑇∗ 

On obtient, tout calcul fait, une année des éclipses d’une durée approximative de 346,74 𝒋∗ 
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2.4.3 La Lune sur la ligne des nœuds lunaires  

Le schéma est équivalent à celui de la figure 7, on substitue à la Terre T la Lune L dont la période de 
rotation est 𝐿∗. 
La composition des vitesses angulaires nous donne la période du mois draconitique.  
 

𝜔⃗⃗ 𝐿𝐷 = 𝜔⃗⃗ 𝑛𝑎
+ 𝜔⃗⃗ 𝐿

∗  

1

𝑇𝐿𝐷
= 

1

𝑇𝑛𝑎

+ 
1

𝐿∗
 

 
Soit après application numérique 𝑻𝑳𝑫 ⩯ 27,2 𝒋∗ 
 
 


